Publications

Found 114 results
2023
P. Ferri, Li, C., Schwalbe-Koda, D., Xie, M., Moliner, M., Gómez-Bombarelli, R., Boronat, M., and Corma, A., Approaching enzymatic catalysis with zeolites or how to select one reaction mechanism competing with others, Nature Communications, vol. 14, p. 2878, 2023.
J. R. Lunger, Karaguesian, J., Chun, H., Peng, J., Tseo, Y., Shan, C. Hsuan, Han, B., Shao-Horn, Y., and Gómez-Bombarelli, R., Atom-by-atom design of metal oxide catalysts for the oxygen evolution reaction with machine learning, arXiv:2305.19930, 2023.
A. Subramanian, Greenman, K. P., Gervaix, A., Yang, T., and Gómez-Bombarelli, R., Automated patent extraction powers generative modeling in focused chemical spaces, Digital Discovery, 2023.
B. Koscher, Canty, R. B., McDonald, M. A., Greenman, K. P., McGill, C. J., Bilodeau, C. L., Jin, W., Wu, H., Vermeire, F. H., Jin, B., Hart, T., Kulesza, T., Li, S. - C., Jaakkola, T. S., Barzilay, R., Gómez-Bombarelli, R., Green, W. H., and Jensen, K. F., Autonomous, multiproperty-driven molecular discovery: from predictions to measurements and back, Science, vol. 382(6677), p. eadi1407, 2023.
S. Yang and Gómez-Bombarelli, R., Chemically Transferable Generative Backmapping of Coarse-Grained Proteins, arXiv:2303.01569, 2023.
G. Bradford, Lopez, J., Ruza, J., Stolberg, M. A., Osterude, R., Johnson, J. A., Gómez-Bombarelli, R., and Shao-Horn, Y., Chemistry-Informed Machine Learning for Polymer Electrolyte Discovery, ACS Central Science, 2023.
J. Peng, Damewood, J., and Gomez-Bombarelli, R., Data-Driven, Physics-Informed Descriptors of Cation Ordering in Multicomponent Oxides, arXiv:2305.01806, 2023.
M. Ší pka, Dietschreit, J. C. B., and Gómez-Bombarelli, R., Differentiable Simulations for Enhanced Sampling of Rare Events, arXiv:2301.03480, 2023.
R. Millan, Bello-Jurado, E., Moliner, M., Boronat, M., and Gómez-Bombarelli, R., Effect of framework composition and NH3 on the diffusion of Cu+ in Cu-CHA catalysts predicted by machine-learning accelerated molecular dynamics, arXiv:2305.12896, 2023.
J. C. B. Dietschreit, Diestler, D. J., and Gómez-Bombarelli, R., Entropy and Energy Profiles of Chemical Reactions, arXiv:2304.10676, 2023.
Y. Orlova, Ridley, G. Keith, Zhao, F., and Gómez-Bombarelli, R., Expanding the Extrapolation Limits of Neural Network Force Fields using Physics-Based Data Augmentation, in Workshop on "Machine Learning for Materials" at ICLR, 2023.
D. Schwalbe-Koda and Gómez-Bombarelli, R., Generating, Managing, and Mining Big Data in Zeolite Simulations, in AI‐Guided Design and Property Prediction for Zeolites and Nanoporous Materials, John Wiley & Sons, Ltd, 2023, pp. 81-111.
A. R. Tan, Urata, S., Yamada, M., and Gómez-Bombarelli, R., Graph theory-based structural analysis on density anomaly of silica glass, Computational Materials Science, vol. 225, p. 112190, 2023.
M. Stolberg, Paren, B., Leon, P., Brown, C., Winter, G., Gordiz, K., Concellón, A., Gómez-Bombarelli, R., Shao-Horn, Y., and Johnson, J., Lamellar ionenes with highly dissociative, anionic channels provide lower barriers for cation transport, J. Am. Chem. Soc., 2023.
S. Roy, Dürholt, J. P., Asche, T. S., Zipoli, F., and Gómez-Bombarelli, R., Learning a reactive potential for silica-water through uncertainty attribution, arXiv:2307.01705, 2023.
W. Wang, Wu, Z., Dietschreit, J. Carl Berto, and Gómez-Bombarelli, R., Learning Pair Potentials using Differentiable Simulations, The Journal of Chemical Physics, vol. 158, p. 044113, 2023.
X. Du, Damewood, J. K., Lunger, J. R., Millan, R., Yildiz, B., Li, L., and Gómez-Bombarelli, R., Machine-learning-accelerated simulations enable heuristic-free surface reconstruction, arXiv:2305.07251, 2023.
S. Axelrod, Shakhnovich, E., and Gómez-Bombarelli, R., Mapping the space of photoswitchable ligands and photodruggable proteins with computational modeling, J. Chem. Inf. Model., 2023.
Y. AlFaraj, Mohapatra, S., Shieh, P., Husted, K., Ivanoff, D., Lloyd, E., Cooper, J., Dai, Y., Singhal, A., Moore, J., Sottos, N., Gómez-Bombarelli, R., and Johnson, J. A., A Model Ensemble Approach Enables Data-Driven Property Prediction for Chemically Deconstructable Thermosets in the Low Data Regime, ChemRxiv, 2023.
S. Axelrod and Gómez-Bombarelli, R., Molecular machine learning with conformer ensembles, Machine Learning: Science and Technology, 2023.
J. S. Brown, Tseo, Y., Lee, M. A., Wong, J. Y. - K., Yang, S., Cho, Y., Kim, C. Rin, Loas, A., Derda, R., Gómez-Bombarelli, R., and Pentelute, B. L., Regularized indirect learning improves phage display ligand discovery, ChemRxiv, 2023.
J. Damewood, Karaguesian, J., Lunger, J. R., Tan, A. R., Xie, M., Peng, J., and Gómez-Bombarelli, R., Representations of Materials for Machine Learning, Annual Review of Materials Research, vol. 53, 2023.
G. Winter and Gómez-Bombarelli, R., Simulations with machine learning potentials identify the ion conduction mechanism mediating non-Arrhenius behavior in LGPS, Journal of Physics Energy, 2023.
A. Rui Tan, Urata, S., Goldman, S., Dietschreit, J. C. B., and Gómez-Bombarelli, R., Single-model uncertainty quantification in neural network potentials does not consistently outperform model ensembles, arXiv:2305.01754, 2023.
S. Axelrod, Shakhnovich, E., and Gómez-Bombarelli, R., Thermal Half-Lives of Azobenzene Derivatives: Virtual Screening Based on Intersystem Crossing Using a Machine Learning Potential, ACS Central Science, 2023.
J. S. Brown, Mohapatra, S., Lee, M. A., Misteli, R., Tseo, Y., Grob, N. M., Quartararo, A. J., Loas, A., Gómez-Bombarelli, R., and Pentelute, B. L., Unsupervised machine learning leads to an abiotic picomolar peptide ligand, ChemRxiv, 2023.
2022
H. V. - T. Nguyen, Jiang, Y., Mohapatra, S., Wang, W., Barnes, J. C., Oldenhuis, N. J., Chen, K. K., Axelrod, S., Huang, Z., Chen, Q., Golder, M. R., Young, K., Suvlu, D., Shen, Y., Willard, A. P., Hore, M. J. A., Gómez-Bombarelli, R., and Johnson, J. A., Bottlebrush polymers with flexible enantiomeric side chains display differential biological properties, Nature Chemistry, vol. 14, pp. 85-93, 2022.
S. Mohapatra, An, J., and Gómez-Bombarelli, R., Chemistry-informed Macromolecule Graph Representation for Similarity Computation, Unsupervised and Supervised Learning, Machine Learning: Science and Technology, 2022.
S. Gong, Xie, T., Shao-Horn, Y., Gómez-Bombarelli, R., and Grossman, J. C., Examining graph neural networks for crystal structures: limitation on capturing periodicity, arXiv:2208.05039, 2022.
S. Axelrod, Shakhnovich, E., and Gómez-Bombarelli, R., Excited state non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential, Nature Communications, vol. 13, p. 3440, 2022.
X. Fu, Wu, Z., Wang, W., Xie, T., Keten, S., Gómez-Bombarelli, R., and Jaakkola, T. S., Forces are not Enough: Benchmark and Critical Evaluation for Machine Learning Force Fields with Molecular Simulations, arXiv:2210.07237, 2022.
J. C. B. Dietschreit, Diestler, D. J., Hulm, A., Ochsenfeld, C., and Gómez-Bombarelli, R., From Free-Energy Profiles to Activation Free Energies, The Journal of Chemical Physics, vol. 157, p. 084113, 2022.
W. Wang, Xu, M., Cai, C., Miller, B. Kurt, Smidt, T., Wang, Y., Tang, J., and Gómez-Bombarelli, R., Generative Coarse-Graining of Molecular Conformations, arXiv:2201.12176, 2022.
S. Axelrod and Gómez-Bombarelli, R., GEOM: Energy-annotated molecular conformations for property prediction and molecular generation, Scientific Data, vol. 9, p. 185, 2022.
J. Peng, Schwalbe-Koda, D., Akkiraju, K., Xie, T., Giordano, L., Yu, Y., C. Eom, J., Lunger, J. R., Zheng, D. J., Rao, R. R., Muy, S., Grossman, J. C., Reuter, K., Gómez-Bombarelli, R., and Shao-Horn, Y., Human- and machine-centred designs of molecules and materials for sustainability and decarbonization, Nature Reviews Materials, 2022.
S. Axelrod, Schwalbe-Koda, D., Mohapatra, S., Damewood, J., Greenman, K. P., and Gómez-Bombarelli, R., Learning Matter: Materials Design with Machine Learning and Atomistic Simulations, Accounts of Materials Research, 2022.
A. A. Farghaly, Ferrandon, M., Schwalbe-Koda, D., Damewood, J., Karaguesian, J., Gómez-Bombarelli, R., and Myers, D. J., Machine Learning and High Throughput Synthesis Acceleration of the Discovery of Alkaline Electrolyte Oxygen Evolution Reaction Electrocatalysts, in ECS Meeting Abstracts, 2022.
K. P. Greenman, Green, W. H., and Gómez-Bombarelli, R., Multi-fidelity prediction of molecular optical peaks with deep learning, Chemical Science, vol. 13(4), pp. 1152 - 1162, 2022.
N. Frey, Soklaski, R., Axelrod, S., Samsi, S., Gómez-Bombarelli, R., Coley, C., and Gadepally, V., Neural Scaling of Deep Chemical Models, ChemRxiv, 2022.
D. Schwalbe-Koda, Santiago-Reyes, O. A., Corma, A., Román-Leshkov, Y., Moliner, M., and Gómez-Bombarelli, R., Repurposing Templates for Zeolite Synthesis from Simulations and Data Mining, Chemistry of Materials, 2022.
J. Damewood, Schwalbe-Koda, D., and Gómez-Bombarelli, R., Sampling Lattices in Semi-Grand Canonical Ensemble with Autoregressive Machine Learning, npj Computational Materials, vol. 8, p. 61, 2022.
S. Urata, Nakamura, N., Tada, T., Tan, A. R., Gómez-Bombarelli, R., and Hosono, H., Suppression of Rayleigh Scattering in Silica Glass by Codoping Boron and Fluorine: Molecular Dynamics Simulations with Force-Matching and Neural Network Potentials, The Journal of Physical Chemistry C, vol. 126(4), pp. 2264–2275, 2022.
E. Bello-Jurado, Schwalbe-Koda, D., Nero, M., Paris, C., Uusimäki, T., Román-Leshkov, Y., Corma, A., Willhammar, T., Gómez-Bombarelli, R., and Moliner, M., Tunable CHA/AEI Zeolite Intergrowths with A Priori Biselective Organic Structure-Directing Agents: Controlling Enrichment and Implications for Selective Catalytic Reduction of NOx, Angewandte Chemie International Edition, 2022.
2021
T. Xie, France-Lanord, A., Wang, Y., Lopez, J., Stolberg, M. Austin, Hill, M., Leverick, G. Michael, Gómez-Bombarelli, R., Johnson, J. A., Shao-Horn, Y., and Grossman, J. C., Accelerating the screening of amorphous polymer electrolytes by learning to reduce random and systematic errors in molecular dynamics simulations, arXiv:2101.05339, 2021.
D. Schwalbe-Koda and Gómez-Bombarelli, R., Benchmarking binding energy calculations for organic structure-directing agents in pure-silica zeolites, The Journal of Chemical Physics, vol. 154, p. 174109, 2021.
J. Karaguesian, Lunger, J. R., Shao-Horn, Y., and Gómez-Bombarelli, R., Crystal graph convolutional neural networks for per-site property prediction, in Fourth Workshop on Machine Learning and the Physical Sciences at NeurIPS, 2021.
D. Schwalbe-Koda, Corma, A., Román-Leshkov, Y., Moliner, M., and Gómez-Bombarelli, R., Data-Driven Design of Biselective Templates for Intergrowth Zeolites, The Journal of Physical Chemistry Letters, vol. 12, pp. 10689-10694, 2021.
E. M. López-Vidal, Schissel, C. K., Mohapatra, S., Bellovoda, K., Wu, C. - L., Wood, J. A., Malmberg, A. B., Loas, A., Gómez-Bombarelli, R., and Pentelute, B. L., Deep Learning Enables Discovery of a Short Nuclear Targeting Peptide for Efficient Delivery of Antisense Oligomers, JACS Au, vol. 1(11), pp. 2009–2020, 2021.
C. K. Schissel, Mohapatra, S., Wolfe, J. M., Fadzen, C. M., Bellovoda, K., Wu, C. - L., Wood, J. A., Malmberg, A. B., Loas, A., Gómez-Bombarelli, R., and Pentelute, B. L., Deep learning to design nuclear-targeting abiotic miniproteins, Nature Chemistry, 2021.
D. Schwalbe-Koda, Tan, A. R., and Gómez-Bombarelli, R., Differentiable sampling of molecular geometries with uncertainty-based adversarial attacks, Nature Communications, vol. 12, p. 5104, 2021.
Z. Jensen, Kwon, S., Schwalbe-Koda, D., Paris, C., Gómez-Bombarelli, R., Román-Leshkov, Y., Corma, A., Moliner, M., and Olivetti, E. A., Discovering relationships between OSDAs and zeolites through data mining and generative neural networks, ACS Central Science, vol. 7, pp. 858–867, 2021.
M. Xu, Wang, W., Luo, S., Shi, C., Bengio, Y., Gómez-Bombarelli, R., and Tang, J., An End-to-End Framework for Molecular Conformation Generation via Bilevel Programming, in International Conference on Machine Learning, 2021.
C. Li, Zhang, G., Mohapatra, S., Callahan, A. J., Loas, A., Gómez-Bombarelli, R., and Pentelute, B. L., Machine Learning Guides Peptide Nucleic Acid Flow Synthesis and Sequence Design, Advanced Science, p. 2201988, 2021.
D. Schwalbe-Koda, Kwon, S., Paris, C., Bello-Jurado, E., Jensen, Z., Olivetti, E. A., Willhammar, T., Corma, A., Román-Leshkov, Y., Moliner, M., and Gómez-Bombarelli, R., A priori control of zeolite phase competition and intergrowth with high-throughput simulations, Science, p. eabh3350, 2021.
D. Schwalbe-Koda and Gómez-Bombarelli, R., Supramolecular Recognition in Crystalline Nanocavities Through Monte Carlo and Voronoi Network Algorithms, The Journal of Physical Chemistry C, vol. 125 (5), pp. 3009-3017, 2021.
M. Hartweg, Jiang, Y., Yilmaz, G., Jarvis, C. M., Nguyen, H. V. - T., Primo, G. A., Monaco, A., Beyer, V. P., Chen, K. K., Mohapatra, S., Axelrod, S., Gómez-Bombarelli, R., Kiessling,  L. L., Becer,  C. Remzi, and Johnson, J. A., Synthetic Glycomacromolecules of Defined Valency, Absolute Configuration, and Topology Distinguish between Human Lectins, JACS Au, vol. 1(10), pp. 1621–1630, 2021.
2020
S. Jun Ang, Wang, W., Schwalbe-Koda, D., Axelrod, S., and Gómez-Bombarelli, R., Active Learning Accelerates Ab Initio Molecular Dynamics on Pericyclic Reactive Energy Surfaces, Chem, vol. 7(3), pp. 738-51, 2020.
W. Wang, Yang, T., Harris, W. Hunt, and Gómez-Bombarelli, R., Active Learning and Neural Network Potentials Accelerate Molecular Screening of Ether-based Solvate Ionic Liquids, Chemical Communications, 2020.
S. Mohapatra, Hartrampf, N., Poskus, M., Loas, A., Gómez-Bombarelli, R., and Pentelute, B. L., Deep learning for prediction and optimization of fast-flow peptide synthesis, ACS Central Science, vol. 6, pp. 2277–2286, 2020.
W. Wang, Axelrod, S., and Gómez-Bombarelli, R., Differentiable Molecular Simulations for Control and Learning, arXiv:2003.00868, 2020.
D. Schwalbe-Koda and Gómez-Bombarelli, R., Generative Models for Automatic Chemical Design, in Machine Learning Meets Quantum Physics, K. T. Schütt, Chmiela, S., O. von Lilienfeld, A., Tkatchenko, A., Tsuda, K., and Müller, K. - R. Cham: Springer International Publishing, 2020, pp. 445 - 467.
R. Gómez-Bombarelli and Aspuru-Guzik, A., Machine learning and big-data in computational chemistry, Handbook of Materials Modeling: Methods: Theory and Modeling, pp. 1939–1962, 2020.
B. Qiao, Mohapatra, S., Lopez, J., Leverick, G., Tatara, R., Shibuya, Y., Jiang, Y., France-Lanord, A., Grossman, J. C., Gómez-Bombarelli, R., Johnson, J., and Shao-Horn, Y., Quantitative Mapping of Molecular Substituents to Macroscopic Properties Enables Predictive Design of Oligoethyleneglycol-Based Lithium Electrolytes, ACS Central Science, 2020.
S. Mohapatra, Yang, T., and Gómez-Bombarelli, R., Reusability report: Designing organic photoelectronic molecules with descriptor conditional recurrent neural networks, Nature Machine Intelligence, vol. 2, pp. 749–752, 2020.
J. Ruza, Wang, W., Schwalbe-Koda, D., Axelrod, S., Harris, W. Hunt, and Gómez-Bombarelli, R., Temperature-transferable coarse-graining of ionic liquids with dual graph convolutional neural networks, The Journal of Chemical Physics, vol. 153, p. 164501, 2020.
2019
W. Wang and Gómez-Bombarelli, R., Coarse-graining auto-encoders for molecular dynamics, npj Computational Materials, vol. 5, no. 1, p. 125, 2019.
F. J. Montáns, Chinesta, F., Gómez-Bombarelli, R., and J Kutz, N., Complex algorithms for data-driven model learning in science and engineering. 2019.
R. Gómez-Bombarelli and Aspuru-Guzik, A., Computational discovery of organic LED materials, Comput. Mater. Disc, pp. 423–446, 2019.
F. J. Montáns, Chinesta, F., Gómez-Bombarelli, R., and J Kutz, N., Data-driven modeling and learning in science and engineering, Comptes Rendus Mécanique, vol. 347, pp. 845–855, 2019.
D. Schwalbe-Koda, Jensen, Z., Olivetti, E. A., and Gómez-Bombarelli, R., Graph similarity drives zeolite diffusionless transformations and intergrowth, Nature Materials, vol. 18, pp. 1177 - 1179, 2019.
D. P. Tabor, Gómez-Bombarelli, R., Tong, L., Gordon, R. G., Aziz, M. J., and Aspuru-Guzik, A., Mapping the frontiers of quinone stability in aqueous media: implications for organic aqueous redox flow batteries, J. Mater. Chem. A, vol. 7, pp. 12833-12841, 2019.
M. Aykol, Hummelshøj, J. S., Anapolsky, A., Aoyagi, K., Bazant, M. Z., Bligaard, T., Braatz, R. D., Broderick, S., Cogswell, D., Dagdelen, J., Drisdell, W., Garcia, E., Garikipati, K., Gavini, V., Gent, W. E., Giordano, L., Gomes, C. P., Gómez-Bombarelli, R., Gopal, C. Balaji, Gregoire, J. M., Grossman, J. C., Herring, P., Hung, L., Jaramillo, T. F., King, L., Kwon, H. - K., Maekawa, R., Minor, A. M., Montoya, J. H., Mueller, T., Ophus, C., Rajan, K., Ramprasad, R., Rohr, B., Schweigert, D., Shao-Horn, Y., Suga, Y., Suram, S. K., Viswanathan, V., Whitacre, J. F., Willard, A. P., Wodo, O., Wolverton, C., and Storey, B. D., The Materials Research Platform: Defining the Requirements from User Stories, Matter, vol. 1, no. 6, pp. 1433 - 1438, 2019.
2016
S. Noimark, Salvadori, E., Gómez-Bombarelli, R., MacRobert, A. J., Parkin, I. P., and Kay, C. W. M., Comparative study of singlet oxygen production by photosensitiser dyes encapsulated in silicone: Towards rational design of anti-microbial surfaces, Physical Chemistry Chemical Physics, vol. 18, 2016.
R. Gómez-Bombarelli, Aguilera-Iparraguirre, J., Hirzel, T. D., Duvenaud, D., Maclaurin, D., Blood-Forsythe, M. A., Chae, H. S., Einzinger, M., Ha, D. - G., Wu, T., Markopoulos, G., Jeon, S., Kang, H., Miyazaki, H., Numata, M., Kim, S., Huang, W., Hong, S. I., Baldo, M., Adams, R. P., and Aspuru-Guzik, A., Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach, Nature Materials, vol. 15, 2016.
A. Fruchtman, Gómez-Bombarelli, R., Lovett, B. W., and Gauger, E. M., Photocell optimization using dark state protection, Physical Review Letters, vol. 117, 2016.
K. Lin, Gómez-Bombarelli, R., Beh, E. S., Tong, L., Chen, Q., Valle, A., Aspuru-Guzik, A., Aziz, M. J., and Gordon, R. G., A redox-flow battery with an alloxazine-based organic electrolyte, Nature Energy, vol. 1, 2016.
R. Gómez-Bombarelli, Aguilera-Iparraguirre, J., Hirzel, T. D., Ha, D. - G., Einzinger, M., Wu, T., Baldo, M. A., and Aspuru-Guzik, A., Turbocharged molecular discovery of OLED emitters: From high-throughput quantum simulation to highly efficient TADF devices, in Proceedings of SPIE - The International Society for Optical Engineering, 2016, vol. 9941.
2012
M. T. Pérez-Prior, Gómez-Bombarelli, R., González-Sánchez, M. I., and Valero, E., Biocatalytic oxidation of phenolic compounds by bovine methemoglobin in the presence of H\textlessinf\textgreater2\textless/inf\textgreaterO\textlessinf\textgreater2\textless/inf\textgreater: Quantitative structure-activity relationships}, Journal of Hazardous Materials, vol. 241-242, 2012.
M. González-Pérez, Gómez-Bombarelli, R., Arenas-Valgañõn, J., Pérez-Prior, M. T., García-Santos, M. P., Calle, E., and Casado, J., Connecting the chemical and biological reactivity of epoxides, Chemical Research in Toxicology, vol. 25, 2012.
R. Gómez-Bombarelli, Calle, E., and Casado, J., DNA damage by genotoxic hydroxyhalofuranones: An in silico approach to MX, Environmental Science and Technology, vol. 46, 2012.
R. Gómez-Bombarelli, González-Pérez, M., Calle, E., and Casado, J., Erratum: Potential of the NBP method for the study of alkylation mechanisms: NBP as a DNA-model (Chemical Research in Toxicology (2012) 25:6 (1176-1191) DOI: 10.1021/tx300065v), Chemical Research in Toxicology, vol. 25, 2012.
R. Gómez-Bombarelli, González-Pérez, M., Pérez-Prior, M. T., Calle, E., and Casado, J., Genotoxic halofuranones in water: Isomerization and acidity of mucohalic acids, Journal of Physical Organic Chemistry, vol. 25, 2012.
R. Gómez-Bombarelli, González-Pérez, M., Calle, E., and Casado, J., Potential of the NBP method for the study of alkylation mechanisms: NBP as a DNA-model, Chemical Research in Toxicology, vol. 25, 2012.
J. Arenas-Valgañõn, Gómez-Bombarelli, R., González-Pérez, M., González-Jiménez, M., Calle, E., and Casado, J., Taurine-nitrite interaction as a precursor of alkylation mechanisms, Food Chemistry, vol. 134, 2012.

Pages